「コルモゴロフ」 確率論に寄与したロシアの数学者 「マンデルブロー集合」仏数学者が考案したフラクタル図形

561QeEylCv
現代確率論の基礎を築いた
20世紀ロシアの数学者です
コルモゴロフ(答)
Andrey Nikolaevich Kolmogorov

CIMG5520sWdGTRk
このような図形を示す集合は
○○○○○○○集合?
(フラクタルの図形)
マンデルブロー(答)
「マンデルブロー集合」

アンドレイ・ニコラエヴィッチ・コルモゴロフ(Андре́й Никола́евич Колмого́ров, Andrey Nikolaevich Kolmogorov, 1903年4月25日 – 1987年10月20日)はロシアの数学者であり、確率論および位相幾何学の大きな発展に寄与した。彼以前の確率論はラプラスによる「確率の解析的理論」に基づく古典的確率論が中心であったが、彼が「測度論に基づく確率論」「確率論の基礎概念(1933年)」で公理主義的確率論を立脚させ、現代確率論の始まりとなった。
初期には直観論理やフーリエ級数に関する研究を行っており、乱流や古典力学に関する研究成果もある。また彼はアルゴリズム情報理論の創始者でもある。なお、イズライル・ゲルファント、ウラジーミル・アーノルドをはじめ、コルモゴロフには数多くの弟子がいる。
引用元:アンドレイ・コルモゴロフ – Wikipedia https://ja.wikipedia.org/wiki/%E3%82%A2%E3%83%B3%E3%83%89%E3%83%AC%E3%82%A4%E3%83%BB%E3%82%B3%E3%83%AB%E3%83%A2%E3%82%B4%E3%83%AD%E3%83%95

コルモゴロフ複雑性(コルモゴロフふくざつせい、英語: Kolmogorov complexity)とは、計算機科学において有限長のデータ列の複雑さを表す指標のひとつで、出力結果がそのデータに一致するプログラムの長さの最小値として定義される。コルモゴロフ複雑度、コルモゴロフ=チャイティン複雑性 (Kolmogorov-Chaitin complexity) とも呼ばれる。

この画像はフラクタル図形であるマンデルブロ集合の一部である。このJPEGファイルのサイズは17KB以上(約140,000ビット)ある。ところが、これと同じファイルは140,000ビットよりも遥かに小さいコンピュータ・プログラムによって作成することが出来る。従って、このJPEGファイルのコルモゴロフ複雑性は140,000よりも遥かに小さい。
コルモゴロフ複雑性の概念は一見すると単純なものであるが、チューリングの停止問題やゲーデルの不完全性定理と関連する深遠な内容をもつ。コルモゴロフ複雑性やその他の文字列やデータ構造の複雑性の計量を研究する計算機科学の分野はアルゴリズム情報理論と呼ばれており、1960 年代末にアンドレイ・コルモゴロフ、レイ・ソロモノフ、グレゴリー・チャイティンによって創始された。
引用元:コルモゴロフ複雑性 – Wikipedia https://ja.wikipedia.org/wiki/%E3%82%B3%E3%83%AB%E3%83%A2%E3%82%B4%E3%83%AD%E3%83%95%E8%A4%87%E9%9B%91%E6%80%A7

数学、特に複素力学系に於けるマンデルブロ集合(マンデルブロしゅうごう、英: Mandelbrot set )は、 充填ジュリア集合に対する指標として提唱された集合である。数学者ブノワ・マンデルブロの名に因む。
引用元:マンデルブロ集合 – Wikipedia https://ja.wikipedia.org/wiki/%E3%83%9E%E3%83%B3%E3%83%87%E3%83%AB%E3%83%96%E3%83%AD%E9%9B%86%E5%90%88